翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Frostman's lemma : ウィキペディア英語版
Frostman lemma
In mathematics, and more specifically, in the theory of fractal dimensions, Frostman's lemma provides a convenient tool for estimating the Hausdorff dimension of sets.
Lemma: Let ''A'' be a Borel subset of R''n'', and let ''s'' > 0. Then the following are equivalent:
*''H''''s''(''A'') > 0, where ''H''''s'' denotes the ''s''-dimensional Hausdorff measure.
*There is an (unsigned) Borel measure ''μ'' satisfying ''μ''(''A'') > 0, and such that
::\mu(B(x,r))\le r^s
:holds for all ''x'' ∈ R''n'' and ''r''>0.
Otto Frostman proved this lemma for closed sets ''A'' as part of his PhD dissertation at Lund University in 1935. The generalization to Borel sets is more involved, and requires the theory of Suslin sets.
A useful corollary of Frostman's lemma requires the notions of the ''s''-capacity of a Borel set ''A'' ⊂ R''n'', which is defined by
:C_s(A):=\sup\Bigl\:\mu\text\mu(A)=1\Bigr\}.
(Here, we take inf ∅ = ∞ and  = 0. As before, the measure \mu is unsigned.) It follows from Frostman's lemma that for Borel ''A'' ⊂ R''n''
:\mathrm_H(A)= \sup\.
==References==

*


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Frostman lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.